

Functional analysis of the *Coxiella burnetii* protein Com1

INTRODUCTION

Function of Com1 in *C. burnetii* is unknown

C. burnetii is an obligate intracellular, Gramnegative bacterium and is the causative agent of Q-fever.

Com1 is an immunoreactive and putative outer membrane protein with a homologous catalytic site to disulfide bond oxidoreductase (DsbA) in *E. coli*.

DsbA-like proteins are associated with pathogen virulence due to vital disulfide bonds in some exotoxins and motility mechanisms.

There is no established protein folding mechanism in *C. burnetii*

Oxidative protein folding mechanism via DsbA in *E. coli*

Catalytic site similarity (CXXC) between the proposed structure of Com1 (A) and the structure of DsbA (B).

Kendall Annetti, Min Pennella, Guoquan Zhang Department of Veterinary Pathobiology, University of Missouri

OBJECTIVE

To investigate the function of Com1 in *C. burnetii*

RESULTS

Cloning of com1

com1 was amplified using PCR and cloned into the pET28a expression vector

Figures

(A) Amplified *com1*: *C. burnetii* genomic DNA was used to amplify the *com1* gene, ~0.7 kb.

(B) Map of pET28a expression vector: recombinant

Com1 was designed with a 6His tag on the C terminus. The final construct was sequenced to verify no presence of mutations.

Purification of Com1

Com1 on whole cell *C. burnetii* is Proteinase k sensitive

As Proteinase k concentrations increase, western blot shows amount of Com1 in whole cell *C. burnetii* decreases

Figure: 30 µL of *C. burnetii* cells (~10¹⁰ cells) were treated with Proteinase k in presence of 10 mM MgCl₂ at 37° C for 2 hours. Cells were pelleted and run on SDS-PAGE gel and western blot was done using anti-Com1 mouse monoclonal antibodies. Proteinase k concentrations- Lane 1: 0 µg/mL; Lane 2: 50 μg/mL; Lane 3: 200 μg/mL; Lane 4: 50 0 μg/mL.

Stipend support was provided by the Department of Veterinary Pathobiology, University of Missouri and project supplies were provided by NIH/NIAID 1RO1AI083364-01 to Guoquan Zhang. Contact information: Kendall Annetti; kla343@mail.Missouri.edu

