Development of a PCR Panel for Tickborne Pathogens <u>Elizabeth Daugherty¹, BS; R. W. Stich², PhD; Kelly Straka, DVM³; Shuping Zhang, DVM, PhD²</u> Veterinary Research Scholars Program

University of Missouri CVM¹, Department of Veterinary Pathobiology²; Missouri Department of Conservation³

We chose to focus on tickborne pathogens which were of epidemiologic importance to Missouri and the Midwest.

University of Missouri

S	Target Pathogen	Primer				Target Amplicon			Positive Control				
		Target Gene	Forward Sequence	Reverse Sequence	Size	T _m (°C)			Size	T _m (°C)			Reference
						Basic	Salt Adjusted	Nearest Neighbor	5120	Basic	Salt Adjusted	Nearest Neighbor	
	Anaplasmataceae	16s rDNA	AACACATGCAAGTCGA ACGA	CCCCCGCAGGGATTATACR	145 (A. marginale)	80.3	93.3	81.44	640	84.2	98.1	85.88	Yoo-Eam et
					153 (E. ewingii)	77.4	90.4	79.19					al.
	Borrelia burgdorferi	OspA	TGAAGGCGTAAAAGCT GACAAAA	TTCTGTTGATGACTTGTCTTTG GAAG	142	73.7	86.7	76.7	568	84.4	98.4	86.12	Hodzic et al.
	Borrelia spp.	FlaB	CTAATGTTGCAAATCT	GTTGTAACATTAATTGG	145	79.8	92.9	82.48	601	84	97.6	85.8	This Study
	Rickettsia spp.	OmpA	ATGAGATAACGGCTGC AGG	CAGCATTCGCTCCCCCTAAA	345	80.2	93.7	82.96	679	84.3	98.2	86.09	
		OmpA	GCTTTATTCACCACCT CAAC	TAATCACCACCGTAAGTAAAT	212	79.7	93.1	82.22	429	85.7	99.5	86.74	Kidd et al.

Rather than create an individual positive control for each primer set, we chose to manufacture a synthetic gene block containing all of the primers 2. What will be our A control and 393 bp long sequence distinct from target amplicons J. in tandem. The distinctive large size of the resulting positive control amplicon will allow us to distinguish between the positive control and a positive sample. positive control?

The MU Veterinary Medical Diagnostic Laboratory (VMDL) requested that we compare our primers to the primers currently used in their diagnostic This experiment will take place in the near future.

> Figure 2: The unoptimized test of the primers in the gene block. FlaB is not included because its unoptimized conditions result in no amplification on conventional PCR. Annealing temperature, 55 °C; 25 cycles, 1.5 mM MgCl₂; 0.5 μM primer concentration, 10 pg of gene block.

Figure 3: The unoptimized dilution series of the gene block with RompA primers. Annealing temperature, 55 °C; 25 cycles, 1.5 mM MgCl₂; 0.5 μM primer concentration

3. How can we improve the specificity and sensitivity of this assay?

Table 1: Primary primer sequences currently being tested for the assay.

Amblyomma americanum otherwise known as the Lone Star Tick, is the most

Figure 4: Initial optimization of our top priority primers using conventional PCR

Figure 4A: Optimization of annealing temperature (T_m). Because the ultimate goal of this project is to develop a diagnostic test, we chose to determine a single annealing temperature for all primers in order to screen for multiple pathogens simultaneously. Arrows designate the chosen optimum T_m.

Figure 4B: Optimization of MgCl₂ with optimized T_m. While this is performed on conventional PCR, we expect to transition this assay to real-time PCR. The kit we will use for this (Qiagen QuantiTect SYBR Green) supplies a master mix with 2.5 mM MgCl₂ already added, so ideally the optimized MgCl₂ concentrations would be at or above this value. Arrows designate the chosen optimum concentration.

Figure 4C: Optimization of primer concentration with optimized T_m and MgCl₂. Arrows designate the chosen optimum concentration.

Transfer method to real-time PCR and

The current hurdle we must

Temperature (°C)

Source: Joe Kosak

Acknowledgments: I would like to thank the VRSP for this wonderful opportunity and the Department of Veterinary Pathobiology for the stipend support. would like to thank Dr. Zhang, Dr. Stich, and the Missouri Department of Conservation for financially supporting this research. Finally, I would like to thank Dr. Zhang for her mentorship and support, Dr. Stitch for his humor and easygoing attitude, and Dr. Straka for her infectious enthusiasm.