Characterization of a New Gene Causing Male ERADIL Infertility in the M366 Mouse Model
 Amanda E. Perman and Elizabeth C. Bryda

 University of Missouri, College of Veterinary Medicine, Columbia, Missouri
Abstract

Spermatogenesis is a complex process involving hundreds of genes, and a malfunction of any protein involved in gamete maturation could potentially result in nonfunctional sperm. Spermatogenesis is very similar between mice and humans, making mice good models for infertility studies. The M366 mouse model involves a mutation in a novel gene called Nup210I.This mutation causes infertility in homozygous male mice Preliminary studies suggest the mutation may affect the function of Sertoli cells, which are vital to spermatogenesis. The purpose of this study is to further explore the nature of this novel gene and the infertility-causing mutation in the M366 mouse model. Characterization of the normal Nup210l gene will include identification of splice variants using mouse testicular RNA and confirmation of the existence of a NUP210L transcript in human testis. The nucleotide sequence of the mutated Nup210l gene carried by affected M366 mice will be compared to the nucleotide sequence of the wild-type Nup210l gene so that the exact nature of the mutation may be determined. These preliminary studies to characterize both wild-type and mutant versions of the Nup2101 gene and their expression will form the basis of future work to define the precise role of the Nup2101 protein in spermatogenesis.

Introduction

$\geqslant-$ The mouse strain M366 carries a mutational insertion in a novel gene called Nup210I. The exact nature of the mutation is unknown
\leadsto Homozygous affected male M366 mice are infertile and have defects in Sertoli cells and spermatozoa.
v The NUP210L gene in humans has been predicted but not yet shown to produce transcripts.

Nup210I Locus and M366 Mutation

Mouse Chromosome 3

[^0] mutaion in te M.
within intron 27 .

Nup210I Transcript Sequence Alignment

Evidence for Mouse Nup210I Splice Variants

Figure 3 . Gel electrophoresis of wild-type mouse RT.PCR products. A. Primers corresponding to
nucleotides $4116-4139$ (95), and $4515-485$ (9 ($)$ of the mouse

the amplocomze labeled $9.1-9.9$. B. In this schematic of the last 4 exoens of mouse Nup210, the position of the fows and reverse primer set 9 primers are indicated by the arrows. The exon content of the 3 primer set 9

Confirmation of Human NUP210L Transcript

Figure 4. Gel electrophoresis of human RT-PCR products. Primers serre desigigned to ampirity hitr egeion
corresponding to nucleotides $2239-26123$ of the preicicted corresponding to tucleo otides $2239-26123$ of the predicted
human NUP210L gene (ENSTOOOOOO668599). Lane $1:$
Uite) human NUP210L gene (ENSTOOOOO38559). Lane 1:
1Kb+ ladder (Invitroenen): Lane 2: ino template (negative)
contoli; Lane 3: human TT-PCR products. A maior

Conclusions

\geqslant Nucleotide sequence analysis done to date does not show any major differences between the M366 allele of Nup210l and the wild-type allele. \geqslant There is evidence that mouse Nup210l is alternatively spliced in testis. \rightarrow We have demonstrated experimentally the presence of a human NUP210L transcript.

Acknowledgements

This research was supported by Pfizer, the Veterinary Research Scholars Program and the Research Animal Diagnostic Laboratory (RADIL). We acknowledge the assistance of Don Connor and Howard Wilson with graphics.

[^0]: mutation in the M366 strain is due to the insertion of an EGFP transgene flanked by inverted repeai
 within intron 27 .

