lodixanol is an effective cryoprotectant for mouse spermatozoa

Mary Timonin¹, Cansu Agca², and Yuksel Agca²

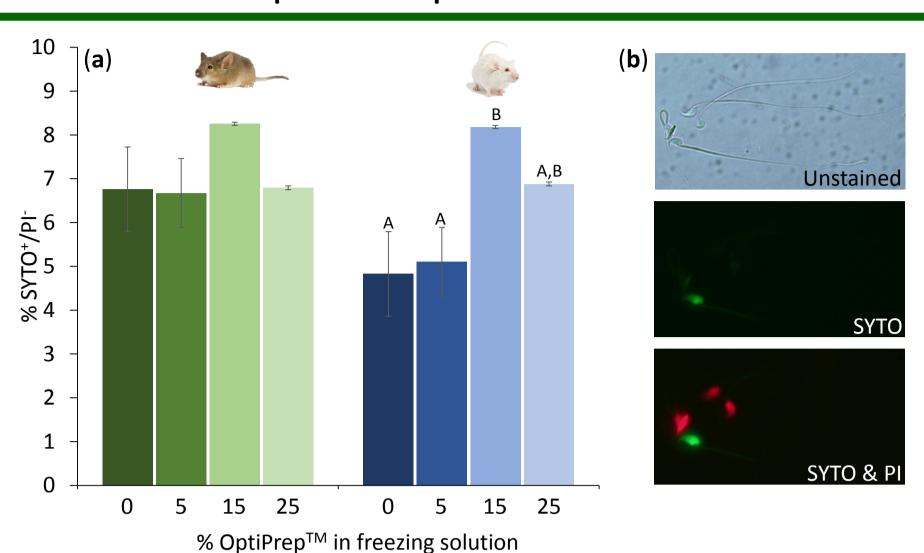
Veterinary Research
Scholars Program
University of Missouri

¹Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK Canada ²Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO

INTRODUCTION

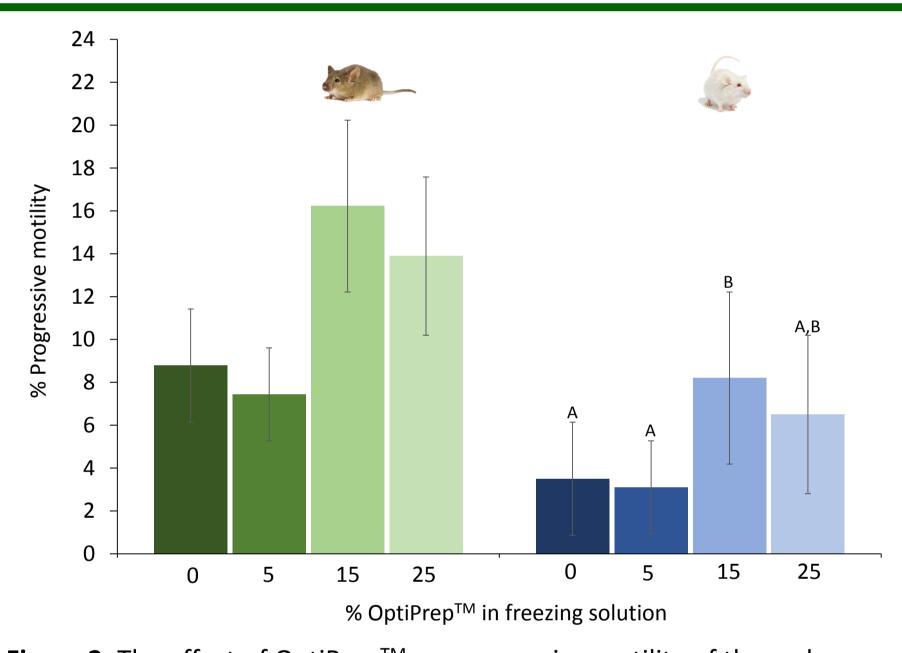
- Cryopreservation of sperm, eggs, and embryos provides a valuable means of maintaining transgenic mouse strains used in biomedical research^{1,2}
- Sperm is easy and inexpensive to collect, store, and transport between research institutes³
- Freezing sperm minimizes the potential for genetic drift or spontaneous loss of phenotype¹
- The ability of thawed sperm from inbred mice to successfully fertilize an egg (sperm viability) is routinely low⁴
- Freezing protocols need improvement to maximize survival and viability of frozenthawed mouse sperm
- Sperm quantity and quality between mouse strains is also highly variable⁴ and freezing protocols need to be standardized to maximize post freezing viability between lines
- Previous research indicates that iodixanol (OptiPrepTM) has cryoprotectant properties for sperm from cattle⁵ and rats ⁶

Hypothesis

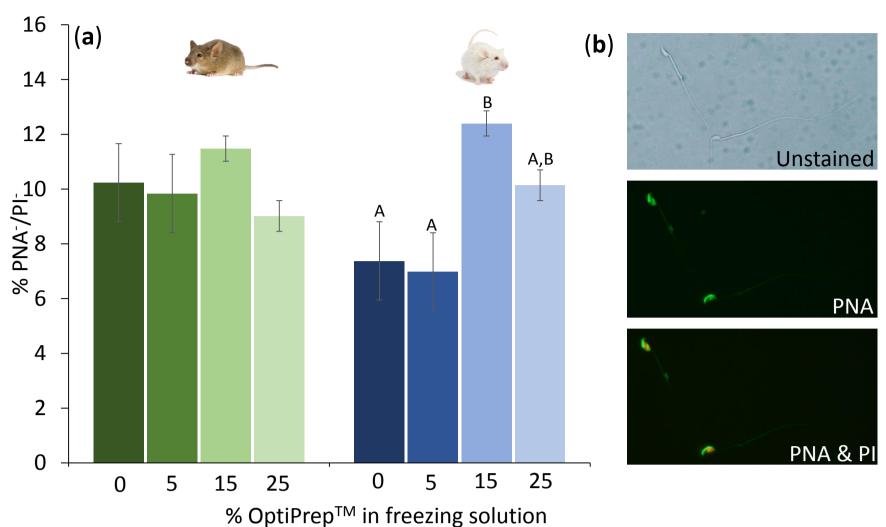

The addition of iodixanol (OptiPrepTM) to a standard freezing solution will improve survival and viability of mouse sperm following freezing and thawing.

If true, we predict that more sperm will:

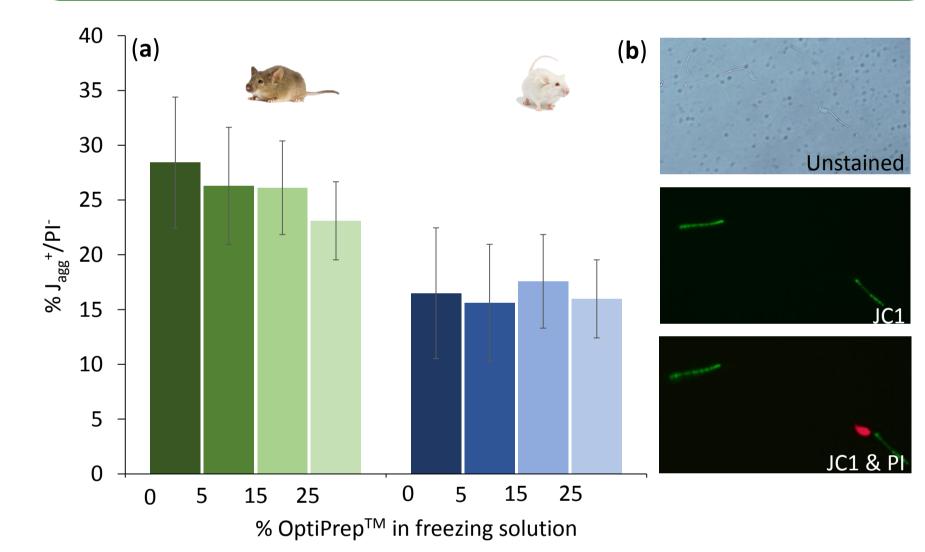
- Survive freezing and thawing
- Show rapid, progressive motility
- Have an intact acrosomal membrane
- Have high mitochondrial membrane potential


RESULTS

Iodixanol improves sperm survival after freezing


Figure 1: (a) The effect of OptiPrepTM on plasma membrane integrity of thawed sperm from 129/SV (green) and FVB/NJ (blue) inbred mouse lines. Four freezing solutions with 0, 5, 15 or 25% OptiPrepTM were compared. Survival was significantly higher for sperm from FVB/NJ mice frozen with solution containing 15% OptiPrepTM compared to the other freezing solutions (difference indicated with letters above bars). Sperm from 129/SV mice showed a similar trend. (b) Viable cells stain with SYTO (green) but not PI (red).

Iodixanol improves motility of thawed sperm


Figure 2: The effect of OptiPrep[™] on progressive motility of thawed sperm from 129/SV (green) and FVB/NJ (blue) inbred mouse lines. Four freezing solutions with 0, 5, 15 or 25% OptiPrep[™] were compared. More sperm from FVB/NJ mice frozen with solution containing 15% OptiPrep[™] showed progressive motility compared to the other freezing solutions (difference indicated with letters above bars) Sperm from 129/SV mice showed a similar trend.

Iodixanol protects acrosomal membrane from freezing damage

Figure 3: (a) The effect of OptiPrep[™] on acrosomal membrane integrity of thawed sperm from 129/SV (green) and FVB/NJ (blue) inbred mouse lines. Four freezing solutions with 0, 5, 15, or 25% OptiPrep[™] were compared. More sperm from FVB/NJ mice frozen with solution containing 15% OptiPrep[™] had an intact acrosomal membrane compared to the other freezing solutions (difference indicated with letters above bars). Sperm from 129/SV mice showed a similar trend. (b) Viable cells with an intact acrosomal membrane do not stain with either dye. Dead cells with a reacted or damaged acrosomal membrane stain with both SYTO (green) and PI (red).

Iodixanol doesn't affect mitochondrial membrane potential of thawed sperm

Figure 4: (a) The effect of OptiPrep[™] on mitochondrial membrane potential of thawed sperm from 129/SV (green) and FVB/NJ (blue) inbred mouse lines. Four freezing solutions with 0, 5, 15 or 25% OptiPrep[™] were compared. (b) Viable cells with a high mitochondrial membrane potential stain in the mid-piece with SYTO (green) but the head does not stain with PI (red).

METHODS

Animals: 10-12 week old 129/SV and FVB/NJ mice

129/SV

- Widely used for gene target studies
- Moderate fresh sperm quality
- Very poor sperm viability after freezing

FVB/NJ

- Widely used for DNA microinjection
- Highly fecund, excellent sperm quality
- Good sperm viability after freezing

Freezing solutions: Iodixanol (OptiPrepTM) was added to a standard raffinose/skim milk freezing solution. The concentration of raffinose was altered to maintain solution osmolarity at less than 500mOsM. Four solutions were compared:

% Raffinose	% OptiPrep TM	Osmolarity (mOsM)
18	0	496
18	5	503
15.5	15	489
14	25	476

Sperm collection, freezing & thawing: Sperm was collected from the cauda epididymis. Sperm suspension was mixed with freezing solution, frozen in liquid nitrogen (LN₂) vapour for 10min, and then plunged into LN₂. Sperm samples were thawed in a 40°C water bath for 5-10 seconds and diluted in TL-HEPES with bovine serum albumin (BSA) for function evaluation.

Evaluation of sperm function:

Sperm viability measure	Analysis technique	Fluorescent dye
Motility	Computer-assisted sperm analysis (CASA)	
Plasma membrane integrity		SYTO 10/PI
Acrosome membrane integrity	Flow cytometry (FACSCalibur, Becton Dickinson)	PNA-Alexa Fluor 488 /PI
Mitochondrial membrane potential		JC-1/PI

Analysis: Generalized linear models (GLM) were run in SAS 7.3 for Windows (SAS Institute Inc., Cary, NC) to compare the effects of OptiPrepTM concentration on sperm viability measures. P-values less than or equal to 0.05 were considered significant.

SUMMARY & CONCLUSIONS

- Addition of iodixanol to a standard freezing solution improves survival of sperm from two inbred mouse strains
- Surviving sperm also show improved viability, measured as progressive motility and acrosomal membrane integrity

FUTURE DIRECTIONS

- Test the cryoprotectant potential of iodixanol for sperm from other common mouse strains
- Use artificial insemination to determine if sperm frozen with iodixanol has improved fertilizing ability

ACKNOWLEDGMENTS

Thanks to Daniel Jackson and Suhee Kim for assistance with flow cytometry data collection and analysis. MT was supported by an endowment established by IDEXX-BioResearch. Mouse photo credit: The Jackson Laboratory.

References: ¹Agca 2012 Theriogenology 78; ²Ostermeier et al 2008 PLoS One 3; ³Critser et al 2000 ILAR Journal 41; ⁴Landel 2005 Lab Animal 34; ⁵Saragusty et al 2009 Theriogenology 71; ⁶ Kim et al 2016 Reprod Biol Endocrinol 14.