Cat Genetic Mutations 05 April 2020 (Public) Table 1

The genes and DNA variants for phenotypic traits of the domestic cat.

Disease / Trait (alleles) OMIA Entry MOI Phenotype Gene Gene Name Mutation
Agouti (A+, a, APbe)[1, 2] 000201-9685 AR Banded fur to solid ASIP Agouti-signaling protein c.122_123delCA; Pbe haplotype
Brown (B+, b, bl)[3, 4] 001249-9685 AR Brown, light brown color variants TYRP1 Tyrosinase-related protein 1 b = IVS6(1262)+5G>A, bl = c.298C>T
Color (C+, Cb, Cs, c, c2, cm)[3, 5-7] 000202-9685 AR Burmese, Siamese color pattern, full albino TYR Tyrosinase cb = c.715G>T, cs = c.940G>A, c = c.975delC, c2 = c.1204C>T (DSH), c.820_936delinsAATCTC
Dilution (D+, d)[8] 000206-9685 AR Black to grey / blue, Orange to cream MLPH Melanophilin c.83delT
Dwarfism 000299-9685 AD Shortening of long bones UGDH UDP-Glucose 6-Dehydrogenase 3.3 KB deletion
Extension (E+, e, er, ec) – Amber, russet, serdolic/carnelian[9, 10] 001199-9685 AR Brown/red color variant MC1R Melanocortin receptor 1 c.250G>A; c.del439TCT; c. 638_667del p.214_223del
Fold (Fd, fd+)[11] 000319-9685 AD Ventral ear fold – Scottish Fold TRPV4 Transient Receptor Potential cation channel, subfamily V, member 4 c.1024G>T
Glitter AR Glitter, shine in hair coat unpublished unpubllished SV 2 Kb insertion
Gloves (G+, g)[12] 001580-9685 AR White feet – Birman KIT KIT c.1035_1036delinsCA
Hairless (Hr+, hr)[13] 001583-9685 AR Atrichia – Sphynx KRT71 Keratin 71 c.816+1G>A
Inhibitor (I, i+) 001583-9685 AD Absence of phaeomelanin unknown unknown unknown
Japanese Bobtail (J, j+)[14, 15] 001987-9685 AD Kinked tail HES7 Hairy and Enhancer of Split family, transcription factor 7 c.5A>G
Kurl (K, k+) 000244-9685 AD Rostral curled pinnae – American curl unknown unknown unknown
LaPerm 000245-9685 AD Curly hair coat unknown Unknown unknown
Longhair (L+, l)[16, 17] 000439-9685 AR Long fur Ragdoll, NFC, MCC, various FGF5 Fibroblast growth factor 5 c.356_367insT, c.406C>T, c.474delT, c.475A>C
Lykoi AR Absent undercoat HR Hairless 6 variants
Manx (M, m+)[18] 000975-9685 AD Absence/short tail TBOX T – box c.998delT, c.1169delC, and c.1199delC, c.998_1014dup17delGCC
Orange (O, o+) 001201-9685 X linked Change in pigment hue Unpublish Unpublished 5 Kb deletion
Peterbald 001201-9685 AD Hairless, brush coat unknown unknown unknown
Polydactyla (Pd, pd+)[19] 000810-9685 AD Extra toes Hemingway (Maine Coon), UK1, UK2 LMBR1 long-distant, limb-specific cis-regulator for SHH c.479A>G, c.257G>C, c.481A>T
Rexing (R+, r)[20] 001684-9685 AR Curly hair coat – Cornish Rex LPAR6 Lysophosphatidic acid receptor 6 c.250_253delTTTG
Rexing (Re+, re)[13] 001581-9685 AR Curly hair coat _ Devon Rex KRT71 Keratin 71 c.1108-4_1184delinsAGTTGGAG, c.1196insT
Rexing (RS, rs+)[21] 001712-9685 AD Curly hair coat – Selkirk Rex KRT71 Keratin 71 c.445-1G>C
Rexing (RU, ru) AR Curly hair coat – Ural Rex unpublished unpublished unpublished
Spotting (S, s+)[23] 000214-9685 Co-D Bicolor / van white KIT KIT 7125ins intron 1 FERV1 element
Tabby(TM, tb)[24] 001429-9685 AR Blotched/classic pattern LVRN Laeverin c.176C>A; c.416C>A; c.682C>A; c.2522G>A
Ticked (Ta, t) 001484-9685 AD No Tabby pattern unknown unknown unknown
White (W, w+)[23] 000209-9685 AD Loss of pigmentation KIT KIT ~700ins intron 1 FERV1 LTR
Wide-band AR? Length of pheomelanin band in hair unknown unknown unknown

‡ Mode of inheritance of the non-wild type variant.  A “+” implies the wild type allele when known. In reference to the mutant allele, AD implies autosomal dominant, AR implies autosomal recessive, co-D implies co-dominant. OMIA: Online Mendelian Inheritance in Animals entries provides links to citations and clinical descriptions of the phenotypes and the diseases. Presented citations are for the causative variant discovery.

References

1.         Eizirik, E., et al., Molecular genetics and evolution of melanism in the cat family. Current Biology, 2003. 13(5): p. 448-53.

2.         Gershony, L.C., et al., Who’s behind that mask and cape? The Asian leopard cat’s Agouti (ASIP) allele likely affects coat colour phenotype in the Bengal cat breed. Animal Genetics, 2014. 45(6): p. 893-7.

3.         Schmidt-Kuntzel, A., et al., Tyrosinase and tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of the Albino and Brown loci. Journal of Heredity, 2005. 96(4): p. 289-301.

4.         Lyons, L.A., et al., Chocolate coated cats: TYRP1 mutations for brown color in domestic cats. Mammalian Genome, 2005. 16(5): p. 356-66.

5.         Imes, D.L., et al., Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation. Animal Genetics, 2006. 37(2): p. 175-8.

6.         Lyons, L.A., et al., Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus). Animal Genetics, 2005. 36(2): p. 119-26.

7.         Abitbol, M., et al., Allelic heterogeneity of albinism in the domestic cat. Anim Genet, 2016.

8.         Ishida, Y., et al., A homozygous single-base deletion in MLPH causes the dilute coat color phenotype in the domestic cat. Genomics, 2006.

9.         Peterschmitt, M., et al., Mutation in the melanocortin 1 receptor is associated with amber colour in the Norwegian Forest Cat. Anim Genet, 2009. 40(4): p. 547-52.

10.       Gustafson, N.A., B. Gandolfi, and L.A. Lyons, Not another type of potato: MC1R and the russet coloration of Burmese cats. Anim Genet, 2016.

11.       Gandolfi, B., et al., A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats. Osteoarthritis Cartilage, 2016. 24(8): p. 1441-50.

12.       Montague, M.J., et al., Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci U S A, 2014. 111(48): p. 17230-5.

13.       Gandolfi, B., et al., The naked truth: Sphynx and Devon Rex cat breed mutations in KRT71. Mamm Genome, 2010. 21(9-10): p. 509-15.

14.       Lyons, L.A., et al., Whole genome sequencing in cats, identifies new models for blindness in AIPL1 and somite segmentation in HES7. BMC Genomics, 2016. 17: p. 265.

15.       Xu, X., et al., Whole Genome Sequencing Identifies a Missense Mutation in HES7 Associated with Short Tails in Asian Domestic Cats. Sci Rep, 2016. 6: p. 31583.

16.       Drogemuller, C., et al., Mutations within the FGF5 gene are associated with hair length in cats. Anim Genet, 2007. 38(3): p. 218-21.

17.       Kehler, J.S., et al., Four independent mutations in the feline fibroblast growth factor 5 gene determine the long-haired phenotype in domestic cats. J Hered, 2007. 98(6): p. 555-66.

18.       Buckingham, K.J., et al., Multiple mutant T alleles cause haploinsufficiency of Brachyury and short tails in Manx cats. Mamm Genome, 2013.

19.       Lettice, L.A., et al., Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum Mol Genet, 2008. 17(7): p. 978-85.

20.       Gandolfi, B., et al., To the Root of the Curl: A Signature of a Recent Selective Sweep Identifies a Mutation That Defines the Cornish Rex Cat Breed. PLoS One, 2013. 8(6): p. e67105.

21.       Gandolfi, B., et al., A splice variant in KRT71 is associated with curly coat phenotype of Selkirk Rex cats. Sci Rep, 2013. 3: p. 2000.

22.       Pilgrim, K.L., et al., Felid sex identification based on noninvasive genetic samples. Molecular Ecology Notes, 2005. 5: p. 60-61.

23.       David, V.A., et al., Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats. G3 (Bethesda), 2014. 4(10): p. 1881-91.

24.       Kaelin, C.B., et al., Specifying and sustaining pigmentation patterns in domestic and wild cats. Science, 2012. 337(6101): p. 1536-41.

25.       Bighignoli, B., et al., Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group. BMC Genet, 2007. 8: p. 27.

26.       Gandolfi, B., et al., A Novel Variant in CMAH Is Associated with Blood Type AB in Ragdoll Cats. PLoS One, 2016. 11(5): p. e0154973.

27.       Tasker, S., et al., Feline blood genotyping versus phenotyping, and detection of non-AB blood type incompatibilities in UK cats. J Small Anim Pract, 2014. 55(4): p. 185-9.

28.       Omi, T., et al., Molecular Characterization of the Cytidine Monophosphate-N-Acetylneuraminic Acid Hydroxylase (CMAH) Gene Associated with the Feline AB Blood Group System. PLoS One, 2016. 11(10): p. e0165000.

29.       Kehl, A., et al., Molecular characterization of blood type A, B, and C (AB) in domestic cats and a CMAH genotyping scheme. PLoS One, 2018. 13(9): p. e0204287.

30.       Aberdein, D., et al., A FAS-ligand variant associated with autoimmune lymphoproliferative syndrome in cats. Mamm Genome, 2016.

31.       Lyons, L.A., et al., Aristaless-Like Homeobox protein 1 (ALX1) variant associated with craniofacial structure and frontonasal dysplasia in Burmese cats. Dev Biol, 2016. 409(2): p. 451-8.

32.       Yoshikawa, R., et al., A Naturally Occurring Domestic Cat APOBEC3 Variant Confers Resistance to Feline Immunodeficiency Virus Infection. J Virol, 2015. 90(1): p. 474-85.

33.       Martin, D.R., et al., Molecular consequences of the pathogenic mutation in feline GM1 gangliosidosis. Mol Genet Metab, 2008. 94(2): p. 212-21.

34.       Bradbury, A.M., et al., Neurodegenerative lysosomal storage disease in European Burmese cats with hexosaminidase beta-subunit deficiency. Mol Genet Metab, 2009. 97(1): p. 53-9.

35.       Muldoon, L.L., et al., Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease). Am J Pathol, 1994. 144(5): p. 1109-18.

36.       Martin, D.R., et al., Mutation of the GM2 activator protein in a feline model of GM2 gangliosidosis. Acta Neuropathol, 2005. 110(5): p. 443-50.

37.       Meurs, K.M., et al., A cardiac myosin binding protein C mutation in the Maine Coon cat with familial hypertrophic cardiomyopathy. Hum Mol Genet, 2005. 14(23): p. 3587-93.

38.       Meurs, K.M., et al., A substitution mutation in the myosin binding protein C gene in ragdoll hypertrophic cardiomyopathy. Genomics, 2007. 90(2): p. 261-4.

39.       Gandolfi, B., et al., First WNK4-hypokalemia animal model identified by genome-wide association in Burmese cats. PLoS One, 2012. 7(12): p. e53173.

40.       Menotti-Raymond, M., et al., Mutation in CEP290 discovered for cat model of human retinal degeneration. J Hered, 2007. 98(3): p. 211-20.

41.       Menotti-Raymond, M., et al., Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol Vis Sci. , 2010. 51(6): p. 2852-9.

42.       Lyons, L.A., et al., Feline polycystic kidney disease mutation identified in PKD1. J Am Soc Nephrol, 2004. 15(10): p. 2548-55.

43.       Grahn, R.A., et al., Erythrocyte Pyruvate Kinase Deficiency mutation identified in multiple breeds of domestic cats. BMC Vet Res, 2012. 8(1): p. 207.

44.       Gandolfi, B., et al., COLQ variant associated with Devon Rex and Sphynx feline hereditary myopathy. Anim Genet, 2015. 46(6): p. 711-5.

45.       Abitbol, M., et al., A COLQ Missense Mutation in Sphynx and Devon Rex Cats with Congenital Myasthenic Syndrome. PLoS One, 2015. 10(9): p. e0137019.

46.       Fyfe, J.C., et al., An approximately 140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival. Genome Research, 2006. 16(9): p. 1084-90.

47.       Owens, S.L., et al., Congenital adrenal hyperplasia associated with mutation in an 11beta-hydroxylase-like gene in a cat. J Vet Intern Med, 2012. 26(5): p. 1221-6.

48.       Chang, H.S., et al., Dihydropyrimidinase deficiency: the first feline case of dihydropyrimidinuria with clinical and molecular findings. JIMD Rep, 2012. 6: p. 21-6.

49.       Asada, H., et al., Hepatic copper accumulation in a young cat with familial variations in the ATP7B gene. J Vet Intern Med, 2019. 33(2): p. 874-878.

50.       Mizukami, K., K. Raj, and U. Giger, Feline cystinuria caused by a missense mutation in the SLC3A1 gene. J Vet Intern Med, 2015. 29(1): p. 120-5.

51.       Mizukami, K., et al., Cystinuria Associated with Different SLC7A9 Gene Variants in the Cat. PLoS One, 2016. 11(7): p. e0159247.

52.       Hilton, S., K. Mizukami, and U. Giger, [Cystinuria caused by a SLC7A9 missense mutation in Siamese-crossbred littermates in Germany]. Tierarztl Prax Ausg K Kleintiere Heimtiere, 2017. 45(4): p. 265-272.

53.       Spycher, M., et al., A frameshift variant in the COL5A1 gene in a cat with Ehlers-Danlos syndrome. Anim Genet, 2018. 49(6): p. 641-644.

54.       Bender, D.E., et al., Molecular characterization of cat factor XII gene and identification of a mutation causing factor XII deficiency in a domestic shorthair cat colony. Vet Pathol, 2015. 52(2): p. 312-20.

55.       Maruyama, H., et al., A novel missense mutation in the factor XII gene in a litter of cats with factor XII deficiency. J Vet Med Sci, 2017. 79(5): p. 822-826.

56.       Maruyama, H., et al., Factor XII deficiency is common in domestic cats and associated with two high frequency F12 mutations. Gene, 2019. 706: p. 6-12.

57.       Casal, M.L., et al., Identification of the Identical Human Mutation in ACVR1 in 2 Cats With Fibrodysplasia Ossificans Progressiva. Vet Pathol, 2019. 56(4): p. 614-618.

58.       Uddin, M.M., et al., Identification of Bangladeshi domestic cats with GM1 gangliosidosis caused by the c.1448G>C mutation of the feline GLB1 gene: case study. J Vet Med Sci, 2013. 75(3): p. 395-7.

59.       Martin, D.R., et al., An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol, 2004. 187(1): p. 30-7.

60.       Kanae, Y., et al., Nonsense mutation of feline beta-hexosaminidase beta-subunit (HEXB) gene causing Sandhoff disease in a family of Japanese domestic cats. Res Vet Sci, 2007. 82(1): p. 54-60.

61.       Kuehn, M.H., et al., Correction: A Mutation in LTBP2 Causes Congenital Glaucoma in Domestic Cats (Felis catus). PLoS One, 2016. 11(8): p. e0161517.

62.       Kuehn, M.H., et al., A Mutation in LTBP2 Causes Congenital Glaucoma in Domestic Cats (Felis catus). PLoS One, 2016. 11(5): p. e0154412.

63.       Goree, M., et al., Characterization of the mutations causing hemophilia B in 2 domestic cats. J Vet Intern Med, 2005. 19(2): p. 200-4.

64.       Goldstein, R., et al., Primary Hyperoxaluria in cats caused by a mutation in the feline GRHPR gene. J Hered, 2009. 100(Supplement 1): p. S2-S7.

65.       Hug, P., et al., A TAC3 Missense Variant in a Domestic Shorthair Cat with Testicular Hypoplasia and Persistent Primary Dentition. Genes (Basel), 2019. 10(10).

66.       Giger, U., et al., Congenital hypothyroidism with goiter in cats due to a TPO mutation. J Vet Intern Med  2015. 29(448): p. Abstract ESVE-O-4.

67.       Abitbol, M., et al., A deletion in FOXN1 is associated with a syndrome characterized by congenital hypotrichosis and short life expectancy in Birman cats. PLoS One, 2015. 10(3): p. e0120668.

68.       De Lucia, M., et al., Genetic variant in the NSDHL gene in a cat with multiple congenital lesions resembling inflammatory linear verrucous epidermal nevi. Vet Dermatol, 2019. 30(1): p. 64-e18.

69.       Bauer, T.R., Jr., et al., Feline leukocyte adhesion (CD18) deficiency caused by a deletion in the integrin beta2 (ITGB2) gene. Vet Clin Pathol, 2017. 46(3): p. 391-400.

70.       Ginzinger, D.G., et al., A mutation in the lipoprotein lipase gene is the molecular basis of chylomicronemia in a colony of domestic cats. J Clin Invest, 1996. 97(5): p. 1257-66.

71.       Wang, P., et al., A GNPTAB nonsense variant is associated with feline mucolipidosis II (I-cell disease). BMC Vet Res, 2018. 14(1): p. 416.

72.       Berg, T., et al., Purification of feline lysosomal alpha-mannosidase, determination of its cDNA sequence and identification of a mutation causing alpha-mannosidosis in Persian cats. Biochem J, 1997. 328 ( Pt 3): p. 863-70.

73.       He, X., et al., Identification and characterization of the molecular lesion causing mucopolysaccharidosis type I in cats. Mol Genet Metab, 1999. 67(2): p. 106-12.

74.       Yogalingam, G., et al., Feline mucopolysaccharidosis type VI. Characterization of recombinant N-acetylgalactosamine 4-sulfatase and identification of a mutation causing the disease. J Biol Chem, 1996. 271(44): p. 27259-65.

75.       Yogalingam, G., et al., Mild feline mucopolysaccharidosis type VI. Identification of an N-acetylgalactosamine-4-sulfatase mutation causing instability and increased specific activity. J Biol Chem, 1998. 273(22): p. 13421-9.

76.       Crawley, A.C., et al., Two mutations within a feline mucopolysaccharidosis type VI colony cause three different clinical phenotypes. J Clin Invest, 1998. 101(1): p. 109-19.

77.       Fyfe, J.C., et al., Molecular basis of feline beta-glucuronidase deficiency: an animal model of mucopolysaccharidosis VII. Genomics, 1999. 58(2): p. 121-8.

78.       Wang, P., et al., Mucopolysaccharidosis VII in a Cat Caused by 2 Adjacent Missense Mutations in the GUSB Gene. J Vet Intern Med, 2015. 29(4): p. 1022-8.

79.       Winand, N.J., et al., Deletion of the dystrophin muscle promoter in feline muscular dystrophy. Neuromuscul Disord, 1994. 4(5-6): p. 433-45.

80.       Gandolfi, B., et al., A novel mutation in CLCN1 associated with feline myotonia congenita. PLoS One, 2014. 9(10): p. e109926.

81.       Somers, K., et al., Mutation analysis of feline Niemann-Pick C1 disease. Mol Genet Metab. , 2003. 79: p. 99-103.

82.       Mauler, D.A., et al., Precision medicine  in cats: novel Niemann-Pick Type C1 diagnosed by whole genome sequencing. Journal of Veterinary Internal Medicine, 2016. In Press.

83.       Zampieri, S., et al., Characterization of a spontaneous novel mutation in the NPC2 gene in a cat affected by Niemann Pick type C disease. PLoS One, 2014. 9(11): p. e112503.

84.       Clavero, S., et al., Feline congenital erythropoietic porphyria: two homozygous UROS missense mutations cause the enzyme deficiency and porphyrin accumulation. Mol Med, 2010. 16(9-10): p. 381-8.

85.       Clavero, S., et al., Diagnosis of feline acute intermittent porphyria presenting with erythrodontia requires molecular analyses. Vet J, 2013. 198(3): p. 720-2.

86.       Clavero, S., et al., Feline acute intermittent porphyria: a phenocopy masquerading as an erythropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations. Hum Mol Genet, 2010. 19(4): p. 584-96.

87.       Teshima, T., et al., A genetic variant of CYP2R1 identified in a cat with type 1B vitamin D-dependent rickets: a case report. BMC Vet Res, 2019. 15(1): p. 62.

88.       Geisen, V., K. Weber, and K. Hartmann, Vitamin D-dependent hereditary rickets type I in a cat. J Vet Intern Med, 2009. 23(1): p. 196-9.

89.       Grahn, R.A., et al., A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA. J Feline Med Surg, 2012. 14(8): p. 587-90.